US009315012B2 ## (12) United States Patent Hoffman, Jr. #### (54) SCREEN PRINTING PALLET ASSEMBLY AND METHOD OF USING PALLET ASSEMBLY IN A SCREEN PRINTING OPERATION (71) Applicant: M&R Printing Equipment, Inc., Glen Ellyn, IL (US) (72) Inventor: Richard C. Hoffman, Jr., Lake Forest, IL (US) (73) Assignee: M&R Printing Equipment, Inc., Roselle, IL (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 173 days. (21) Appl. No.: 14/060,310 (22) Filed: Oct. 22, 2013 #### (65) Prior Publication Data US 2015/0107467 A1 Apr. 23, 2015 (51) Int. Cl. B41F 15/10 (2006.01)B41F 15/08 (2006.01)B41F 15/26 (2006.01)B41F 17/00 (2006.01)B41F 17/38 (2006.01)B41M 1/12 (2006.01)B41M 1/26 (2006.01)B41F 15/04 (2006.01) (52) U.S. Cl. ### (10) Patent No.: US 9,315,012 B2 (45) **Date of Patent:** Apr. 19, 2016 #### (58) Field of Classification Search #### (56) References Cited #### U.S. PATENT DOCUMENTS 2,221,197 A 3,643,519 A 2/1972 Ebersold 4/1988 Szarka (Continued) Primary Examiner — Leslie J Evanisko Assistant Examiner — Marissa Ferguson Samreth (74) Attorney, Agent, or Firm — Nixon Peabody LLP #### (57) ABSTRACT A method of screen printing positionally synchronizes a plurality of pallet assemblies on a first screen printing machine with a plurality of pallet assemblies on a second screen printing machine. A screen printed garment having a properly aligned first image received from the first screen printing machine is transferred on a portion of one of the pallet assemblies on the first screen printing machine to one of the plurality of pallet assemblies on the second printing machine. The properly aligned first image on the garment is in proper positional alignment with a screen printing head on the second screen printing machine such that a second image complimentary to the first image is printed on the garment in proper position on the garment relative to the first image without user intervention to positionally locate the first image relative to the screen printing head on the second machine. #### 8 Claims, 12 Drawing Sheets # US 9,315,012 B2 Page 2 | (56) | | | | Referen | ces Cited | 5,575,20 | 6 A | 11/1996 | Szyszko | |------|-----------------------|---|---|---------|----------------------|------------------|--------|---------|------------------------| | () | | | | | | 5,816,17 | 3 A * | 10/1998 | Warneford B65D 19/0012 | | | U.S. PATENT DOCUMENTS | | | | | | | | 108/51.11 | | | | | | | | 5,921,170 | 6 A | 7/1999 | Oleson | | 4.8 | 819,559 | Α | | 4/1989 | Szarka | 5,943,953 | 3 A | 8/1999 | Oleson | | | 846.058 | | | | Farris B41F 15/0813 | 5,953,98 | 7 A | 9/1999 | Oleson | | .,. | 0.0,000 | • | | ., 1,00 | 101/123 | 5,974,96 | 2 A | 11/1999 | Hamu et al. | | 4.8 | 875,268 | Α | | 10/1989 | | D480,753 | 3 S | 10/2003 | Oleson | | | 909,146 | | | 3/1990 | | 6,640,71 | 4 B1* | 11/2003 | Papa B41F 15/0863 | | - ,- | 984,960 | | | 1/1991 | | | | | 101/126 | | | 090,313 | | | | Chapman B41F 15/0863 | 6,910,419 | 9 B2 | 6/2005 | Oleson | | -,- | , | | | | 101/115 | 7,413,30 | 1 B2* | 8/2008 | Niimi B41J 2/01 | | 5.1 | 149,045 | Α | | 9/1992 | Szarka | , , | | | 101/126 | | | 226,362 | | * | | Iaccino B41F 15/0863 | 2004/000024 | 0 A1* | 1/2004 | Oleson B41F 15/18 | | - ,- | , | | | | 101/126 | 200 11 00 00 2 1 | | 1,200. | 101/126 | | 5.2 | 247,885 | Α | * | 9/1993 | | | | | 101/120 | | - ,- | , | | | | 101/126 | * cited by exa | aminer | | | FIG. 3 FIG. 4 FIG. 5 FIG. 9 FIG. 10 FIG. 11 FIG. 12 #### SCREEN PRINTING PALLET ASSEMBLY AND METHOD OF USING PALLET ASSEMBLY IN A SCREEN PRINTING OPERATION CROSS-REFERENCE TO RELATED APPLICATIONS N/A FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT N/A #### TECHNICAL FIELD The invention relates to screen printing and more particularly to a pallet assembly and a method for using the pallet assembly in a screen printing operation. 20 #### BACKGROUND Printed indicia which are applied to textiles such as T-shirts and other articles of clothing have become very popular in the last decade. Boutiques which specialize in printing fanciful indicia such as ornamentation, slogans, college names, or sports team names on T-shirts and other clothing are commonly seen in shopping malls. The indicia available at these boutiques can be pre-printed on a substrate and applied to articles of clothing purchased by the consumer with a heated press by boutique operators, or can be applied directly to an article of clothing. The indicia can comprise either simple one-color block letters or elaborate multi-color illustrations. In common use in the industry in printing objects such as substrates or articles of clothing is a multi-station, turret type, printing press. The printing press of this type has a plurality of flat beds or platens spaced along its perimeter. Corresponding to each of these beds is a series of stations where a part of the 40 indicia is alternately printed and cured on the object, i.e., substrate or article, being printed. The number of stations employed depends on the number of colors to be printed on the object. Indicia can consist of up to ten colors or more. Also in common use are single station printing machines. 45 Single station machines require the operator to print one color at a time using one screen at a time. After one color is printed on an object, the screen is removed and another screen placed thereon to print another color. As with the multi-station press, the new screen must be perfectly aligned with the preceding 50 screen such that the image remains in registration. This single-stage process is very time-consuming, especially if multiple colors are used. The most critical and time-consuming part of the screen printing process involving multiple colors is the alignment or 55 registration of successive screens. Each screen for each color must be in registration with the other screens to ensure that the various colors do not overlap or are incorrectly spaced. Otherwise, the printed indicia will not be in registration, resulting in a skewed or imperfect indicia. Current screen printing apparatuses, such as turret-type screen printing apparatuses, are generally limited in the number of colors that can be applied to a given textile by the number of printing heads or stations positioned about the screen printing apparatus. This makes it difficult or impossible to print a textile with, for example, 15 colors on a single 12 station printing apparatus. 2 However, many screen printing shops have more than one printing machine. If a garment could be transferred from a first machine to a second machine, the number of colors that could be printed on a textile could be expanded beyond the number of print stations available on a single printing machine. Unfortunately, to do so would require maintaining perfect or near-perfect registration between the textile and the print heads on two separate printing machines. Currently, no adequate solution to this problem has been developed which would allow transferring an already printed textile from one screen printing machine to a second screen printing machine while maintaining adequate registration of the textile to the print heads on the two separate machines. The present invention is provided to solve the problems 15 discussed above and other problems, and to provide advantages and aspects not provided by prior automated printing machines and methods of screen printing of this type. A full discussion of the features and advantages of the present invention is deferred to the following detailed description, which proceeds with reference to the accompanying drawings. #### SUMMARY OF THE INVENTION One aspect of the invention is directed to a method of screen printing comprising the step of positionally synchronizing a plurality of pallet assemblies on a first screen printing machine with a plurality of pallet assemblies on a second screen printing machine wherein a screen printed garment having a properly aligned first image received from the first screen printing machine can be transferred on a portion of one of the pallet assemblies on the first screen printing machine to one of the plurality of pallet assemblies on the second printing machine and wherein the properly aligned first image on the garment is in proper positional alignment with a screen printing head on the second screen printing machine such that a second image complimentary to the first image may be printed on the garment in proper position on the garment relative to the first image without further user intervention to positionally locate the first image relative to the screen printing head 31 on the second machine. Another aspect of the present invention is directed to a method of screen printing comprising the steps of: (1) establishing a first screen printing machine having a frame, a plurality of printing heads attached to the frame and a plurality of pallet assemblies attached to the frame and separately and alternatingly alignable with each of the plurality of printing heads 31 wherein each of the pallet assemblies comprises a subassembly attached to the frame and locationally adjustable relative thereto; (2) establishing a second screen printing machine also having a frame, a plurality of printing heads attached to the frame and a plurality of pallet assemblies attached to the frame and separately and alternatingly alignable with each of the plurality of printing heads wherein each of the pallet assemblies comprises a subassembly attached to the frame and locationally adjustable relative thereto; (3) establishing a first alignment means 84 supported by the first screen printing machine; (4) providing a pallet removably transferable between the subassemblies and positionally reg-60 istered relative thereto; (5) adjusting a position of the pallet as it is transferred to each pallet assembly on the first screen printing machine relative to the first alignment means 84; (6) transferring the first alignment means to the
second screen printing machine and supporting the first alignment means by the second screen printing machine; (7) adjusting a position of the pallet as it is transferred to each pallet assembly on the first screen printing machine relative to the first alignment means; (8) registering a position of each of the printing heads 31 on the first screen printing machine relative to a first pallet assembly on the first screen printing machine; and (9) registering a position of each of the printing heads on the second screen printing machine relative to a second pallet assembly 5 on the second screen printing machine. Another aspect of the present invention is directed to a pallet assembly comprising a removable pallet and a subassembly attachable to an arm of a screen printing apparatus. The subassembly comprises an upper subassembly and a 10 lower subassembly. The upper subassembly has a first registration system for maintaining the pallet on the upper subassembly in proper registration. The lower subassembly is attached to the upper subassembly and is configured for relative movement therewith. The lower subassembly has a second registration system. The second registration system provides relative X and Y coordinate movement between the upper subassembly and the lower subassembly. A pair of first-coordinate adjusters allow actuation of a first relative movement between the upper subassembly and the lower 20 subassembly. A second-coordinate adjuster actuation of a second relative movement between the lower subassembly and the upper subassembly transverse to the first relative movement. Another aspect of the present invention is directed to a 25 method of screen printing comprising the steps of: (1) establishing a first screen printing machine having a frame, a plurality of printing heads attached to the frame and a plurality of pallet assemblies attached to the frame and separately and alternatingly alignable with each of the plurality of printing heads wherein each of the pallet assemblies comprises a subassembly attached to the frame and locationally adjustable relative thereto; (2) establishing a second screen printing machine also having a frame, a plurality of printing heads attached to the frame and a plurality of pallet assemblies 35 attached to the frame and separately and alternatingly alignable with each of the plurality of printing heads wherein each of the pallet assemblies comprises a subassembly attached to the frame and locationally adjustable relative thereto; (3) establishing a first alignment means supported by the first 40 screen printing machine; (4) providing a pallet removably transferable between the subassemblies and positionally registered relative thereto; (5) adjusting a position of the pallet as it is transferred to each pallet assembly on the first screen printing machine relative to the first alignment means; (6) 45 transferring the first alignment means to the second screen printing machine and supporting the first alignment means by the second screen printing machine; and (7) adjusting a position of the pallet as it is transferred to each pallet assembly on the first screen printing machine relative to the first alignment 50 Another aspect of the present invention is directed to a method of screen printing comprising the steps of: 1) attaching a first plurality of like pallet assemblies to a corresponding number of support arms on a first screen printing apparatus 55 carrying out the method of the present invention; wherein each pallet assembly comprises a lower subassembly attached to one of the support arms and an upper subassembly for supporting a pallet thereon having a pallet registry system; 2) attaching a second plurality of like pallet assemblies to a corresponding number of support arms on a second screen 60 to the back edge; printing apparatus wherein each of the second plurality of like pallet assemblies is substantially identical to the first plurality of like pallet assemblies; 3) establishing a first alignment mechanism between the first screen printing apparatus and the first plurality of like pallet assemblies wherein the alignment mechanism comprises a removable pallet having a first target thereon which separately engages the pallet registry system when supported by a corresponding upper subassembly and a second target attached to a first print station on the first screen printing apparatus; 4) supporting the removable pallet on a first pallet assembly of the first plurality of like subassemblies; 5) bringing the first pallet assembly of the first plurality of like subassemblies to the first print station on the first screen printing machine; 6) aligning the first target with the second target by providing relative movement between the upper subassembly and the lower subassembly of the first pallet assembly of the first plurality of like subassemblies; 7) fixing the relative position of the upper subassembly to the lower subassembly of the first pallet assembly of the first plurality of like subassemblies; 8) repeating steps 4) through 7) for each remaining pallet assembly in the first plurality of like pallet assemblies; 9) establishing the alignment mechanism on the second screen printing apparatus; 10) performing steps 4) through 7) for each pallet assembly in the second plurality of like pallet assemblies. Another aspect of the present invention is directed to a pallet assembly comprising a removable pallet and a subassembly. The subassembly is attachable to an arm of a screen printing apparatus. The subassembly comprises an upper subassembly and a lower subassembly. The upper subassembly has a first registration system for maintaining the pallet on the upper subassembly in proper registration. The lower subassembly is attached to the upper subassembly and is configured for relative movement therewith. A second registration system provides relative X and Y coordinate macro movement between the upper subassembly and the lower subassembly. A third registration system separate from the second registration system provides relative X and Y coordinate micro movement between the upper subassembly and the lower subassembly. Other features and advantages of the invention will be apparent from the following specification taken in conjunction with the following drawings. #### BRIEF DESCRIPTION OF THE DRAWINGS To understand the present invention, it will now be described by way of example, with reference to the accompanying drawings in which: FIG. 1 is a generally schematically represented perspective view of a turret screen printing apparatus which may be used in conjunction with or in carrying out the present invention; FIG. 2 is a generally schematic representation of a first screen printing and a second screen printing apparatus wherein a user or operator transfers a pallet carrying a garment or object to be screen printed from the first screen printing machine to the second screen printing machine and wherein the object remains in registration with the printing screens on the first and second screen printing machines; FIG. 3 is a perspective view of a pallet assembly for use in FIG. 4 is a is a top view of the pallet assembly; FIG. 5 is a bottom view of the pallet assembly; FIG. 6 is a is a cross-sectional of the pallet assembly taken through the center of the pallet assembly from the front edge FIG. 7 is a front view of the pallet assembly; FIG. 8 is a back view of the pallet assembly; FIG. 9 is a perspective view of a removable pallet; FIG. 10 is a perspective view of the pallet assembly with 65 the pallet removed; FIG. 11 is a perspective view of the pallet assembly with the upper subassembly removed; and FIG. 12 is a perspective view of the lower pallet assembly with the X and Y coordinate adjuster removed. #### DETAILED DESCRIPTION While this invention is susceptible of embodiments in many different forms, there is shown in the drawings and will herein be described in detail preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to the embodiments illustrated. Referring to FIG. 1, a typical turret style automated multistroke printing press 10 is shown, including a frame including a central turret or base section 11 supporting a plurality of spaced apart, spoking, radial upper arms 30 and radial lower arms 70. In the embodiment shown, the distal ends of the lower arms 70 support pallet assemblies for carrying a target article, e.g., a textile, a rug, or other substrate (not shown), to be printed upon. The distal ends of the upper arms 30 support 20 printing heads 31 or conventional, well-known curing units (not shown), such that a curing station or printing head 31 is associated with each arm 30. While the machine of the present invention is shown and described having upper arms supporting printing heads or curing units and the lower arms support- 25 ing pallets, it is, of course possible for the upper arms to support the pallets and the lower arms to support the printing heads or curing units. One of the sets of arms 30,70 rotates around the base section 11. In the embodiment shown, the lower arms 70 30 rotate relative to the upper arms 30. This base section 11 includes, among other things, the unit's 10 supporting feet and control panel. The typical printing head includes a flood bar, a squeegee, and a screen supported by opposed arms. Relative movement 35 between the flood bar and a target area, which may include the screen, a target article, and the pallet, causes the flood bar to bring paint or ink to the screen. Upon a relative movement by the squeegee and the target area, the ink is applied across the screen by the adjacent squeegee. Together, a print is formed 40 on the textile. Typically, only one color can be delivered to a garment by each print head 31. This process and the
apparatus are well-known in the art of screen printing. However, many times a user or operator will want to produce a print on a target using a number of colors 45 that exceeds the capability of a single screen printing machine. In such case, the user may be inclined to use a second screen printing machine 100 to deliver the additional colors using the print heads 31 on the second machine 100. Unfortunately, up to this point, maintaining proper registration between of the garment and the print heads from the first machine 10 to the second machine 100 has been difficult if not impossible. Existing screen printing machines simply do not provide the means necessary to ensure registration between the garment and the print heads from screen printing machine 55 to screen printing machine. The present invention provides the means necessary to carry out such a task. As discussed herein the first and second screen printing machines 10,100 are substantially identical. As shown in FIG. 2, the present invention allows a user to 60 transfer a pallet from a first screen printing machine 10 to a second screen printing machine 100. A novel and unobvious pallet assembly 200 attachable to the arms 70,170 first and second screen printing machines allows the a printed upon garment to be transferred from the first machine to the second 65 machine while remaining and/or achieving registration with the print heads 31 on the two machines. 6 It follows that a method of the present invention includes positional synchronizing a plurality of pallet assemblies 200 on a first screen printing machine 10 with a plurality of pallet assemblies 200 on a second screen printing machine 100. A screen printed garment having a properly aligned first image received from the first screen printing machine 10 can be transferred on a portion of one of the pallet assemblies 200, namely a removable pallet 204 on the first screen printing machine 10 to one of the plurality of pallet assemblies 200 on the second printing machine 100. The properly aligned first image on the garment is in proper positional alignment with a screen printing head on the second screen printing machine 100 such that a second image complimentary to the first image may be printed on the garment in proper position on the garment relative to the first image without user intervention to positionally locate the first image relative to the screen printing head on the second screen printing machine. Here, the method is achieved through the use of a novel and inventive pallet assembly 200 illustrated in FIGS. 3-12. The pallet assembly 200 includes a removable pallet 300 supported on a subassembly 400. The pallet assembly 200 has a means for registering the pallet 204 with the subassembly 400 such that a removable pallet 300 can be transferred from one subassembly 400 to a like second pallet assembly 400 without losing proper registration of the pallet 200 with either subassembly. Stated another way, registration of the removable pallet 300 is synchronized such that it is simultaneously properly registered with the first subassembly and the like second subassembly and may be selectively placed on either subassembly without losing proper registration. In one embodiment, the pallet 300 has a plurality of notches 300a,b,c formed in a peripheral edge of the pallet 300. In the embodiment illustrated, two notches 304a,b are located on an opposite, or opposing edge, of the pallet 300 as a third notch 304c. It should be understood the placement of the notches 304a,b,c is at least somewhat optional in that they can be placed in various locations about the peripheral edge of the pallet 300 as long as three point registration is accomplished with the placement. The pallet 300 has a generally planar garment supporting surface 308 on an upper surface thereof. The subassembly 400 attaches to the pallet arm 70 of the printing machine 10 and has mechanical controls to move and position the pallet 300 relative to the arm 70. In one embodiment, the subassembly 400 comprises three primary parts—a pallet supporting frame, pallet support, or upper subassembly 404 for supporting the removable pallet 300, a separate arm connecting frame or lower subassembly 408 for connecting the subassembly 400 to the pallet arm 70, and an adjustment mechanism for moving the pallet supporting frame 404 relative to the arm connecting frame 408. The upper subassembly 404 is supported by the lower subassembly 408. The upper subassembly 404 is fixedly attached to the lower assembly 408 during use. During set up, the upper subassembly 404 position relative to the lower subassembly 408 or on the lower subassembly 408 is variable such that proper registration of the entire pallet assembly 200 can be achieved as will explained below in more detail. Once the desired position of the upper subassembly 404 to the lower subassembly 408 is achieved, fasteners, such as threaded bolts and nuts or "hockey pucks" 409a,b,c,d, are tightened to fix the position of the upper subassembly 404 relative to the lower subassembly 408. The lower subassembly **408** includes a pair of parallel rails **410**a,b joined by beam members **412**a,b,c fixedly attached to the rails **410**a,b and spanning a space therebetween. The rails **410**a,b include outwardly directed flanges **414**a,b for attach- ing the pallet assembly 200 to the arm or the screen printing machine 10 and upper flanges 416,a,b for supporting the upper subassembly 404 thereon. The upper flanges 416a,b include large openings 418a,b,c,d which are aligned with the fasteners described above to allow, for example, a bolt to pass through the flanges **416***a*, *b* and have a large enough opening area to allow the bolt to move freely therein. The beam members 412a,c include complimentary large openings as illustrated. In other words, a bolt extending downwardly from the upper subassembly 408 is selectively moveable within the openings 418,a,b,c,d until, at least, the nuts 409a,b,c,d. This allows a given amount of relative movement between the upper subassembly 404 and the lower subassembly 408 until the fasteners are tightened. This is method of making macroadjusting movements or large adjusting movements of the upper subassembly 404 relative to the lower subassembly 408. Small movements of the position of the upper subassembly 404 relative to the lower subassembly 408 are controlled by 20 the adjustment mechanism. In one embodiment, the adjustment mechanism includes a pair of X-coordinate adjusters 420a,b and a Y-coordinate adjuster 424 attached to cross members 428a,b which are slidable relative to the lower subassembly 408 in the X-direction, i.e. movement actuated by 25 the X-coordinate adjusters, within slots 432a,b,c,d in the upper flanges 416a,b and restrained from movement transverse to that direction relative to the lower subassembly 408 by a shape of the slots 432a,b,c,d. The cross members 428a,b, like the beam members 412a,b,c, span the distance between 30 the rails 410a,b. Portions of the X-coordinate adjusters 420a,b pass through corresponding slots 432b,d in the flanges 416a,b and engage one of the rails 410b, for example, in threaded relationship therewith. Threaded actuators 436a,b can be turned to provide relative movement to the cross members 428a,b to micro-adjust or make small adjustments of the upper subassembly 404 relative to the lower subassembly 408. The Y-coordinate adjuster passes through a slot 438a in one of the cross members 428a and engages an abutment 439 on 40 a bottom surface of the cross member 428a, for example in threaded relationship therewith. A threaded actuator 436c can be turned to provide relative micro adjustment or small relative movement between the upper subassembly 404 and the lower subassembly 408. The Y-coordinate adjuster 424 is 45 attached to the upper subassembly 404 via a fastener, for example a bolt, transfer movement thereto The upper subassembly **404** is joined to the lower subassembly **408** by the fastener described above relative to the Y-coordinate adjuster **424** and via a pin attached to the upper 50 subassembly **404** and extending downwardly through a slot **438***b* in the cross member **428***b* opposite the cross member associated with the Y coordinate adjuster **424**. It should be understood that the slots 438a,b formed in the cross members 428a,b respectively generally extend in a 55 lengthwise direction that is transverse to the slots 432a,b,c,d formed in the flanges 416a,b of the rails 410a,b. The lower subassembly **404** further includes a plurality of pins **440***a,b,c* corresponding generally to the number of notches **304***a,b,c* in the pallet **300** and sized and located such 60 that the pins **440***a,b,c* can be received within the notches **304***a,b,c* to register the pallet **300** with the subassembly **400**. The pins **440***a,b,c* may include adjusters **444***a,b* to vary the location of the pins **440***a,b* somewhat relative to the surface of the lower subassembly **404**. This will vary the position of the 5 pallet **300** on the subassembly **400** and the size of the pallet **300** if so desired. 8 A method of using the pallet assembly in accordance with the principles of the invention follows. A master registration screen **80** is used to register all of the subassemblies and pallets to two or more printing machines **10,100** (digital and screen). The pallet 300 supports a textile to be printed upon and attaches to the subassembly 400 via a three point system (shown as three pins 440a,b,c on the subassembly 400 and three corresponding notches 304a,b,c on the pallet 300). The subassembly 400 attaches to a pallet arm 70 of the printing machine 10 and has mechanical controls to move and position the pallet 300 relative to the arm 70. There is a separate subassembly 400 releasably attached to each arm 70 of a printing machine 10. Each pallet assembly **200** includes a pallet **300** releasably
connected to the subassembly **400**. The pallet 300 is removable from the subassembly 400 and the subassembly 400 is releasably fixed or attached to the end of each arm 70. A registration screen frame **80** is secured at a print head **31** (for example, Station No. 1) of a first printing machine **10**. The registration screen frame 80 has marking 84 thereon used for visually or physically indexing and aligning each pallet assembly 200 (the pallet and the subassembly). For example, the registration frame 80 may have marks inside the frame, such as on a screen, or on the frame to align with complimentary marks 312 on a pallet 300. Alternatively, the frame may have projections or indentations that correspond with indentations and projections on the pallet to mechanically or visibly align the pallet to the registration frame. Alignment is done by bringing the printing arm 70 with the pallet assembly 200 (the pallet 300 and subassembly 400) up to the registration frame 80 so there is a physical "kissing" of the two. The upper subassembly 404 supporting the pallet 300 is then adjusted relative to the arm 70 connecting frame and consequently the lower subassembly 408 using the macro and micro means for adjustment described above. Once alignment is completed, the pallet 300 is then removed and put onto the subassembly 400 of a second arm 70 and the second subassembly is rotated or indexed to its location under the registration frame 80 of the Station No. 1 and similarly registered or aligned. The printing arms are rotated one at a time and aligned to the registration frame 80 at the single print head (Station No. 1). Only one pallet 300 needs to be used to align all of the subassemblies 400. The pallet 300 can moved from one subassembly 400 to the next like subassembly 400 as each like subassembly 400 is aligned. Note that this single pallet 300 can have markings 312 thereon or even a textile thereon (such as one previously used in another printing machine, e.g., digital printing machine, to facilitate its alignment with the registration frame. This alignment of all of the pallet assemblies 200 (the single pallet and the many subassemblies) is performed for each arm 70. As a result, if there are 12 arms for printing, there will be 12 subassemblies aligned, one for each arm. Again, the same pallet can be used to align each subassembly. The registration screen frame 80 is removed from the print head 31 and installed onto the second printing machine 100 for use thereon. The second printing machine 100 can then be set-up in the same manner as the first printing machine, such as using Station No. 1 print head to support the registration screen frame and using the same pallet to register all of the subassemblies on all of the print arms. Once the pallet assembly 200 is aligned, the printing screens at the printing heads are next aligned. It should be noted that the above procedure can be used to link two screen printing machines 10,100 together so as to maintain registration or alignment between the machines. For 5 example, if a shop has a two 12 color screen printing machines 10,100 and wants to print a sixteen color job (16 printing heads), it can link the two machines so that the combination of printing heads used at the two machines for the job is sixteen, such as seven print heads on machine one 10 and nine print heads on the second machine 100, or eight print heads on the first machine 10 and eight print heads on the second machine 100, nine print heads on the first machine 10 and seven print heads on the second machine 100, etc. In addition, the linking can be used with one or more digital 15 textile printing machines (Direct-to-Garment Printers ("DTG")). Using the pallet above, the DTG printer is the first machine and prints on a textile and the pallet described above is used to align/register a second printer, such as a screen a print head (for example, Station No. 1) of a second printing machine. Thus, any number of combinations of DTG printers and screen printer machines can be linked together. Examples of DTG printers are those manufactured by M&R Printing Equipment, Inc., Glen Ellyn, Ill. under the 25 i-Dot® trademark (US Reg. No. 3,643,519), such as the i-Dot 4100, i-Dot 2100, and the i-Dot. Registering the Printing Screens on a First Printing Machine To register the screens on a machine, one textile pallet is removed from the subassembly affixed to a printing arm and 30 then replaced with a Tri-Loc® registration pallet. The Tri-Loc® system is a registered trademark of M&R Printing Equipment, Inc., Glen Ellyn, Ill. (US Reg. No. 2,221,197) and patented under U.S. Pat. Nos. 5,953,987, 5,943,953, and 5,921,176, the disclosures therein incorporated herein by ref- The screens with images thereon in their respective printing frames are placed in the print heads. Tri-Loc® registration pallet is then used to register each Specifically, the pallet arm with the pallet assembly having the Tri-Loc® registration pallet thereon is rotated to each print station and print head, aligned, and the screen and frame When complete, the Tri-Loc® registration pallet is 45 removed from the pallet subassembly of the pallet assembly and replaced with a regular pallet carrying a textile. Registering the Pallet Assemblies on a Second Printing Machine The original registration screen frame is installed on the 50 print head. The process above is repeated with the second printing Registering the Printing Screens on a First Printing Machine The original Tri-Loc® registration pallet is installed onto a 55 new pallet subassembly of the pallet assembly on the second printing machine and the process above is repeated with the second machine. In one embodiment, a method of screen printing comprising the step of positionally synchronizing a plurality of pallet 60 assemblies 200 on a first screen printing machine 10 with a plurality of pallet assemblies 200 on a second screen printing machine 100 wherein a screen printed garment having a properly aligned first image received from the first screen printing machine can be transferred on a portion of one of the pallet 65 assemblies 200 on the first screen printing machine 10 to one of the plurality of pallet assemblies 200 on the second printing 10 machine 100 and wherein the properly aligned first image on the garment is in proper positional alignment with a screen printing head 31 on the second screen printing machine 100 such that a second image complimentary to the first image may be printed on the garment in proper position on the garment relative to the first image without further user intervention to positionally locate the first image relative to the screen printing head 31 on the second machine 100. This embodiment may include one or more of the following steps, alone or in any reasonable combination. The method may further include the step of positionally synchronizing a plurality of print heads on the first screen printing machine with one of the plurality of pallet assemblies on the first screen printing machine. The method may further comprise the step of positionally synchronizing a plurality of print heads on the second screen printing machine with one of the plurality of pallet assemblies on the second screen printing machine. In one embodiment a method of screen printing comprising printing machine. The registration screen frame is secured at 20 the steps of: (1) establishing a first screen printing machine 10 having a frame, a plurality of printing heads 31 attached to the frame and a plurality of pallet assemblies 200 attached to the frame and separately and alternatingly alignable with each of the plurality of printing heads 31 wherein each of the pallet assemblies 200 comprises a subassembly 400 attached to the frame and locationally adjustable relative thereto; (2) establishing a second screen printing machine 100 also having a frame, a plurality of printing heads 31 attached to the frame and a plurality of pallet assemblies 200 attached to the frame and separately and alternatingly alignable with each of the plurality of printing heads 31 wherein each of the pallet assemblies 200 comprises a subassembly 400 attached to the frame and locationally adjustable relative thereto; (3) establishing a first alignment means 84 supported by the first screen printing machine 10; (4) providing a pallet 300 removably transferable between the subassemblies 400 and positionally registered relative thereto; (5) adjusting a position of the pallet 300 as it is transferred to each pallet assembly 20 on the first screen printing machine 10 relative to the first alignment means 84; (6) transferring the first alignment means 84 to the second screen printing machine 100 and supporting the first alignment means 84 by the second screen printing machine 100; (7) adjusting a position of the pallet 300 as it is transferred to each pallet assembly 200 on the first screen printing machine 10 relative to the first alignment means 84; (8) registering a position of each of the printing heads 31 on the first screen printing machine 10 relative to a first pallet assembly 200 on the first screen printing machine 10; and (9) registering a position of each of the printing heads 31 on the second screen printing machine 100 relative to a second pallet assembly 200 on the second screen printing machine 100. In one embodiment, a pallet assembly 200 comprises a removable pallet 300 and a subassembly 400 attachable to an arm 70 of a screen printing apparatus 10. The subassembly 400 comprises an upper subassembly 404 and a lower subassembly 408. The upper subassembly 404 has a first registration system 440a,b,c for maintaining the pallet 300 on the upper subassembly 404 in proper registration. The lower subassembly 408 is attached to the upper subassembly 404 and is configured for relative movement therewith. The lower subassembly 408 has a second registration system. The second registration system provides relative X
and Y coordinate movement between the upper subassembly 404 and the lower subassembly 408. A pair of first-coordinate adjusters 420a,ballow actuation of a first relative movement between the upper subassembly 404 and the lower subassembly 408. A second-coordinate adjuster 424 actuation of a second relative movement between the lower subassembly 404 and the upper subassembly 408 transverse to the first relative movement. This embodiment may include one or more of the following features, alone or in any reasonable combination. The first registration system may comprise a pair of spaced adjustable pins 440a,b and a fixed pin 440c wherein the pair of adjustable pins 440a,b are located along an opposite edge of the upper subassembly 400 as the fixed pin 440c and wherein the adjustable pins 440a,b and the fixed pin 440c project outwardly from the upper subassembly 404. The first-coordinate adjusters 420a,b comprise a threaded actuator 436a,b for dynamic adjustment of a position of the upper subassembly 404 relative to the lower subassembly 408. The second coordinate adjuster 424 may comprise a threaded actuator 436c for dynamic adjustment of a position of the upper subassembly 404 relative to the lower subassembly 408. In one embodiment, a method of screen printing comprising the steps of: (1) establishing a first screen printing machine 10 having a frame, a plurality of printing heads 31 attached to the frame and a plurality of pallet assemblies 200 20 attached to the frame and separately and alternatingly alignable with each of the plurality of printing heads 31 wherein each of the pallet assemblies 200 comprises a subassembly 400 attached to the frame and locationally adjustable relative thereto; (2) establishing a second screen printing machine 25 100 also having a frame, a plurality of printing heads 31 attached to the frame and a plurality of pallet assemblies 200 attached to the frame and separately and alternatingly alignable with each of the plurality of printing heads 31 wherein each of the pallet assemblies 200 comprises a subassembly 30 **400** attached to the frame and locationally adjustable relative thereto; (3) establishing a first alignment means 84 supported by the first screen printing machine 31; (4) providing a pallet 300 removably transferable between the subassemblies 400 and positionally registered relative thereto; (5) adjusting a 35 position of the pallet 300 as it is transferred to each pallet assembly 200 on the first screen printing machine relative to the first alignment means 84; (6) transferring the first alignment means 84 to the second screen printing machine 100 and supporting the first alignment means by the second screen 40 printing machine 100; and (7) adjusting a position of the pallet 300 as it is transferred to each pallet assembly 200 on the first screen printing machine 10 relative to the first alignment means 84. This embodiment may include one or more of the following features, alone or in any reasonable combination. The method may further include the step of registering a position of each of the printing heads 31 on the first screen printing machine 10 relative to a first pallet assembly 200 on the first screen printing machine 10. The method may further include 50 the step of registering a position of each of the printing heads 31 on the second screen printing machine 100 relative to a second pallet assembly 200 on the second screen printing machine 100. In one embodiment, a method of screen printing comprising the steps of: 1) attaching a first plurality of like pallet assemblies 200 to a corresponding number of support arms 70 on a first screen printing apparatus 10 wherein each pallet assembly 200 comprises a lower subassembly 408 attached to one of the support arms 70 and an upper subassembly 404 for supporting a pallet thereon having a pallet registry system; 2) attaching a second plurality of like pallet assemblies 200 to a corresponding number of support arms 170 on a second screen printing apparatus 100 wherein each of the second plurality of like pallet assemblies 200 is substantially identical to the first plurality of like pallet assemblies 200; 3) establishing a first alignment mechanism between the first 12 screen printing apparatus 10 and the first plurality of like pallet assemblies 200 wherein the alignment mechanism comprises a removable pallet 300 having a first target 312 thereon which separately engages the pallet registry system when supported by a corresponding upper subassembly 404 and a second target 84 attached to a first print station on the first screen printing apparatus 10; 4) supporting the removable pallet 300 on a first pallet assembly 200 of the first plurality of like subassemblies 200; 4) bringing the first pallet assembly 200 of the first plurality of like subassemblies 200 to the first print station on the first screen printing machine 10; 6) aligning the first target 84 with the second target 312 by providing relative movement between the upper subassembly 404 and the lower subassembly 408 of the first pallet assembly 200 of the first plurality of like subassemblies; 7) fixing the relative position of the upper subassembly 404 to the lower subassembly 408 of the first pallet assembly 200 of the first plurality of like subassemblies 200; 8) repeating steps 4) through 7) for each remaining pallet assembly in the first plurality of like pallet assemblies; 9) establishing the alignment mechanism on the second screen printing apparatus; 10) performing steps 4) through 7) for each pallet assembly 200 in the second plurality of like pallet assemblies 200. This embodiment may include one or more of the following features, alone or in any reasonable combination. The method may further comprises the step of registering each print head 31 in a first plurality of print heads on the first screen printing apparatus 10 to one of the subassemblies 200 in the first plurality of like pallet assemblies 200. The method may further comprise the step of registering each print head 31 in a second plurality of print heads on the second screen printing apparatus 100 to one of the subassemblies 200 in the second plurality of like pallet assemblies 200. In one embodiment a pallet assembly 200 comprises a removable pallet 300 and a subassembly 400. The subassembly 400 is attachable to an arm 70 of a screen printing apparatus 10. The subassembly 400 comprises an upper subassembly 404 and a lower subassembly 408. The upper subassembly 404 has a first registration system for maintaining the pallet 300 on the upper subassembly 404 in proper registration. The lower subassembly 408 is attached to the upper subassembly 404 and is configured for relative movement therewith. A second registration system provides relative X and Y coordinate macro movement between the upper subassembly 404 and the lower subassembly 408. A third registration system separate from the second registration system provides relative X and Y coordinate micro movement between the upper subassembly 404 and the lower subassembly 408. This embodiment may include one or more of the following features, alone or in any reasonable combination. The third registration system may comprise a pair of first-coordinate adjusters 420a,b allowing actuation of a first relative movement between the upper subassembly 404 and the lower subassembly 408. The second registration system may comprise a second-coordinate adjuster 424 allowing actuation of a second relative movement between the lower subassembly 408 and the upper subassembly 404 transverse to the first relative movement. The second registration system may comprise an aperture 418a,b,c,d in one of the upper subassembly 404 or the lower subassembly 408 having an opening area, and a fastener attaching the upper subassembly 404 to the lower subassembly 408 having a portion which passes through the aperture 418a,b,c,d which has a cross-sectional area smaller than the opening area of the aperture 418a,b,c,dto allow movement therein and a complimentary portion for 13 fixing a relative position between the upper subassembly 404 and the lower subassembly 408. The terms "first," "second," "upper," "lower," "top," "bottom," etc. are used for illustrative purposes relative to other elements only and are not intended to limit the embodiments in any way. The term "plurality" as used herein is intended to indicate any number greater than one, either disjunctively or conjunctively as necessary, up to an infinite number. The terms "joined," "attached," and "connected" as used herein are intended to put or bring two elements together so as to 10 form a unit, and any number of elements, devices, fasteners, etc. may be provided between the joined or connected elements unless otherwise specified by the use of the term "directly" and/or supported by the drawings. While the specific embodiments have been illustrated and 15 described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only limited by the scope of the accompanying Claims. What is claimed is: - 1. A pallet assembly comprising: - a removable pallet; and - a subassembly attachable to an arm of a screen printing apparatus comprising: - an upper subassembly comprising a first registration 25 system for maintaining the pallet on upper subassembly in proper registration; - a lower subassembly attached to the upper subassembly and configured for relative movement therewith; - a second registration system for providing relative X and 30 Y coordinate movement between the upper subassembly and the lower subassembly comprising: - a pair of first-coordinate adjusters allowing actuation of a first relative movement between the upper subassembly and the lower subassembly; and - a second-coordinate adjuster allowing actuation of a second relative movement between the lower subassembly and the upper subassembly transverse to the first relative
movement. - 2. The pallet assembly of claim 1 wherein the first registration system comprises a pair of spaced adjustable pins and a fixed pin wherein the pair of adjustable pins are located along an opposite edge of the upper subassembly as the fixed pin and wherein the adjustable pins and the fixed pin project outwardly from the upper subassembly. - 3. The pallet assembly of claim 1 wherein the first-coordinate adjusters comprise a threaded actuator for dynamic adjustment of a position of the upper subassembly relative to the lower subassembly. - **4**. The pallet assembly of claim **3** wherein the second 50 coordinate adjuster also comprises a threaded actuator for dynamic adjustment of a position of the upper subassembly relative to the lower subassembly. - **5**. A pallet assembly comprising: a removable pallet; and 14 - a subassembly attachable to an arm of a screen printing apparatus comprising: - an upper subassembly comprising a first registration system for maintaining the pallet on upper subassembly in proper registration; - a lower subassembly attached to the upper subassembly and configured for relative movement therewith; - a second registration system for providing relative X and Y coordinate macro movement between the upper subassembly and the lower subassembly; and - a third registration system separate from the second registration system for providing relative X and Y coordinate micro movement between the upper sub-assembly and the lower subassembly. - **6**. The pallet assembly of claim **5** wherein the third registration system comprises: - a pair of first-coordinate adjusters allowing actuation of a first relative movement between the upper subassembly and the lower subassembly; and - a second-coordinate adjuster allowing actuation of a second relative movement between the lower subassembly and the upper subassembly transverse to the first relative movement. - 7. The pallet assembly of claim 5 wherein the second registration system comprises: - an aperture in one of the upper subassembly or the lower subassembly having an opening area; - a fastener attaching the upper subassembly to the lower subassembly having a portion which passes through the aperture which has a cross-sectional area smaller than the opening area of the aperture to allow movement therein and a complimentary portion for fixing a relative position between the upper subassembly and the lower subassembly. - **8**. The pallet assembly of claim **5** wherein: the third registration system comprises: - a pair of first-coordinate adjusters allowing actuation of a first relative movement between the upper subassembly and the lower subassembly; and - a second-coordinate adjuster allowing actuation of a second relative movement between the lower subassembly and the upper subassembly transverse to the first relative movement; and the second registration system comprises: - an aperture in one of the upper subassembly or the lower subassembly having an opening area; and - a fastener attaching the upper subassembly to the lower subassembly having a portion which passes through the aperture which has a cross-sectional area smaller than the opening area of the aperture to allow movement therein and a complimentary portion for fixing a relative position between the upper subassembly and the lower subassembly. * * * * *